
CHUANBEINONE, A NOVEL D/E CIS-(22R,25S)-5a-CEVANINE ALKALOID

FROM CHINESE HERBAL DRUG, CHUAN-BEI-MU

Kô Kaneko^{*}, Takao Katsuhara, and Hiroshi Mitsuhashi Faculty of Pharmaceutical Sciences,Hokkaido University Kita-12-jo Nishi-6-chome Kita Ku, Sapporo 060, Hokkaido, Japan Yuh-Pan Chen and Hong-Yen Hsu Oriental Healing Arts Institute, Long Beach, California 90815, USA. Motoo Shiro Shionogi Research Laboratory,Shionogi & Co., Fukushima Ku, Osaka 553, Japan

SUMMARY: A novel D/E <u>cis</u> (22R,25S)-20-deoxy-5 α -cevanine alkaloid, chuanbeinone, was isolated from the herbal drug of <u>Fritillaria</u> plant ("chuan-bei-mu" in chinese), and its absolute configuration was confirmed by x-ray crystallographic analysis.

In the previous paper, we reported the structure elucidation of D/E <u>cis</u> (22S,25S)-20-deoxy-5 α -cevanine alkaloids, delavine (2) and delavinone (3), which were isolated from <u>Fritillaria delavayi</u> Franch (Liliaceae)¹⁾. In a continuing study, a novel D/E <u>cis</u> (22R,25S)-20-deoxy-5 α -cevanine alkaloid, chuanbeinone(1) (0.002% from dried bulb), was isolated together with imperialine (0.002% from dried bulb) from a chinese herbal drug, chuan-bei-mu (from some subspecies of <u>F. delavayi</u> Franch) which is commercially available on the chinese markets.

Chuanbeinone (1): crystallized from MeOH as colorless needles, mp 149-152°, C₂₇H₄₃NO₂ (M⁺, obsd. $\underline{m}/\underline{z}$ 413.3273, calcd. 413.3293), $[\alpha]_{D}$ -62.4° (\underline{c} =0.5, CHCl₃), CD $[0]_{295}$ - 5600 (neg. max., $\underline{c}=2.4\times10^{-3}$, MeOH) IR: $v \underset{max}{\text{CHCl}3}$ (cm⁻¹) 3400(OH), 2800 and 2750(<u>trans</u> quinolizidine)²), 1705(six-membered ring ketone), MS: $\underline{m/z}$ 413(45%), 398(9%), 395(7%), 112(46%), 111(base peak,100%), ¹H-NMR(CDCl₃): δ 0.70(3H, \underline{s} , 19-H), 0.84(3H, \underline{d} , J=6Hz, 27-H), 0.98(3H, \underline{d} , J=7Hz, 21-H) and 3.57(1H, \underline{m} , $w \frac{1}{2}=23$ Hz, 3 α -H). The appearance of two secondary methyl signals at δ 0.98 and 0.84 in the ¹H-NMR spectrum of 1 suggests the absence of any hydroxy group at C-20, similar to those of 2 and 3^{1} , and the presence of an equatorial methyl group at C-25 respectively. The signal at δ 0.70 ascribable to 19-H in 1 was similar to that in imperialine³). The hydrogen on the carbon bearing a hydroxyl group observed at δ 3.57, and a six-membered ring ketone absorption was present in the IR spectrum of 1. From these physical properties, chuanbeinone(1) was estimated to be 20-deoxy-5 α -cevanine-3 β -ol-6-on.

The absolute configuration of 1 was confirmed by the X-ray crystal structure elucidation of its hydroiodide (mp 303-306°). The structure of the molecule is shown in Fig. 1. The crystal of chanbeinone-hydroiodide belongs to the orthorhombic system with space group $\underline{P}2_12_12_1$, and the cell dimensions $\underline{a}=14.977(6)$, $\underline{b}=22.199(7)$, $\underline{c}=7.852(3)$ Å, $\underline{v}=2611(2)$ Å³, $\underline{d}(calcd.)=1.38g$ cm⁻³, $\underline{d}(obsd.)=1.34g$ cm⁻³(flotation), z=4. Three-dimensional intensity data were collected on Rigaku AFC-5 diffractometer and 2635 independent reflections were measured for $0 \le 25^{\circ}$ by the 0-20 scan technique with Mo-Ka radiation. The structure was solved by a conventional heavy-atom method and refined by a block-diagonal anisotropic least-squares technique to R=0.026 for 2273 reflections.

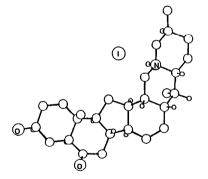


Fig. 1 A Molecular Perspective Drawing Showing the Absolute Configuration of Chuanbeinone Hydroiodide

The ring fusions in 1 are as follows: A/B <u>trans</u>, B/C <u>trans</u>, C/D <u>cis</u>, D/E <u>cis</u> and E/F <u>trans</u>. The configurations at the chiral centers have been settled as 3-OH β -equatorial, 10-Me β -axial, 20-Me α -axial, 22-H β -axial, 25-Me β -equatorial, and a lone pair of the nitrogen α -axial. The six membered rings A, B, E and F are in the chair conformations and ring D is in a boat one.

Table Shifts		
C-No.	1	3 ¹)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 a) In	37.6 30.6 70.9 30.3 56.4 211.1 46.8 38.2 54.8 38.2 32.0 36.6 37.7 43.3 24.4 24.8 48.0 65.7 12.4 37.4 11.4 66.9 30.1 33.6 31.1 59.9 19.8	37.6 30.6 70.9 30.3 56.7 211.0 47.0 39.7 56.7 38.3 30.0 39.5 39.3 41.0 26.8 17.1 46.9 59.3 12.7 35.7 15.6 62.4 24.9 30.4 28.4 61.8 18.3 Particles of the second seco
in CHCl ₃ .		

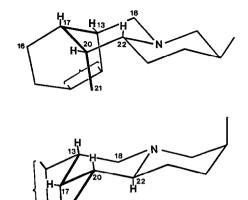


Fig. 2

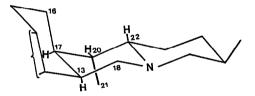


Fig. 3

In the ¹H-NMR spectrum of 1, one of the two secondary methyls (21-H) was shifted downfield at δ 0.98 compared with that of 3 (δ 0.83) because of the deshielding effect on 21-H with the α -axial lone pair of the nitrogen atom. The another methyl signal (27-H) was shifted upfield compared with those of other (25S)-5 α -cevanine alkaloids because of the equatorial orientation with shielding effect from the α axial lone pair of the nitrogen atom. In the ¹³C-NMR spectrum of 1 (Table I), the chemical shifts of C-18, C-22, which are carbons attached to the nitrogen atom, and C-16 were exhibited to be downfield at δ 65.7, 66.9 and 24.8 compared with those of 3 at δ 59.3, 62.4 and 17.1, respectively. This fact supports the absence of γ -gauche interaction between these carbons in 1. The signal for C-21 shifted higher field at δ 11.4 ppm compared with 3 at δ 15.6 ppm because of the γ -gauche interaction of this carbon with C-13 (fig.2).⁴ However in the molecular model study, the mirror image correlation was established for E and F ring moiety between 1 and (20S,22S,25R) D/E <u>cis</u> cevanine derivative (Fig.3). Therefore, we could not determine the absolute configuration of 1 on the basis of NMR study, but on the x-ray analysis instead.

Chuanbeinone (1) is the first alkaloid, with an unusual (22R)-<u>trans</u> quinolizidine moiety from <u>Fritillaria</u> sources. This compound has an interest in its biological activity⁵), because of this unique structure. The main biological activities of chuanbeinone are as follows: coronary-dilator MIC 2.5μ g/ml in guinea pig heart <u>in</u> <u>vitro</u> (reference; isoproterenol 0.1 μ g/ml), cardiotropic MIC 10μ g/ml in guinea pig heart <u>in vitro</u> (isoproterenol 0.01 μ g/ml)and anti-serotonin MIC 10μ g/ml in guinea pig ileum <u>in vitro</u> (promethazine 2 μ g/ml).

References and Note

- K. Kaneko, T. Katsuhara, H. Mitsuhashi, Y. Chen, H. Hsu and M. shiro, <u>Chem. Pharm.</u> <u>Bull.</u>, <u>33</u>, 2614 (1985).
- 2) F. Bohlmann, Chem. Ber., 91, 2157 (1958).
- 3) S. Ito, M. Kato, K. Shibata and T. Nozoe, Chem. Pharm. Bull., 11 1337 (1963).
- 4) H. Beierbeck and J. K. Saunders, Can. J. Chem., 53, 1307 (1975).

(Received in Japan 25 February 1986)